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A primary motivation for sequencing the mouse genome was to
accelerate the discovery of mammalian genes by using sequence
conservation between mouse and human to identify coding exons.
Achieving this goal proved challenging because of the large propor-
tion of the mouse and human genomes that is apparently conserved
but apparently does not code for protein. We developed a two-stage
procedure that exploits the mouse and human genome sequences to
produce a set of genes with a much higher rate of experimental
verification than previously reported prediction methods. RT-PCR
amplification and direct sequencing applied to an initial sample of
mouse predictions that do not overlap previously known genes
verified the regions flanking one intron in 139 predictions, with
verification rates reaching 76%. On average, the confirmed predic-
tions show more restricted expression patterns than the mouse
orthologs of known human genes, and two-thirds lack homologs in
fish genomes, demonstrating the sensitivity of this dual-genome
approach to hard-to-find genes. We verified 112 previously unknown
homologs of known proteins, including two homeobox proteins
relevant to developmental biology, an aquaporin, and a homolog of
dystrophin. We estimate that transcription and splicing can be veri-
fied for >1,000 gene predictions identified by this method that do not
overlap known genes. This is likely to constitute a significant fraction
of the previously unknown, multiexon mammalian genes.

Complete and precise delineation of protein coding genes in
mammalian genomes remains a challenging task. To produce

a preliminary gene catalog for the draft sequence of the mouse (1),
the Mouse Genome Sequencing Consortium relied primarily on the
ENSEMBL gene build pipeline (2). ENSEMBL works by (i) aligning
known mouse cDNAs from REFSEQ (3), RIKEN (4, 5), and
SWISSPROT (6, 7) to the genome, (ii) aligning known proteins from
related mammalian genes to the genome, and (iii) using portions of
GENSCAN (8) predictions that are supported by experimental evi-
dence (such as ESTs). This conservative approach yielded �23,600
genes. However, ENSEMBL cannot predict genes for which there is
no preexisting evidence of transcription (1). Furthermore, reliance
on known transcripts may lead to a bias against predicting genes that
are expressed in a restricted manner or at very low levels.

Before the production of a draft genome sequence for a
second mammal, the best available methods for predicting novel
mammalian genes were single-genome de novo gene-prediction
programs, of which GENSCAN (8) is one of the most accurate and
most widely used. These programs work by recognizing statistical
patterns characteristic of coding sequences, splice signals, and
other features in the genome to be annotated. However, they
tend to predict many apparently false exons caused by the
occurrence of such patterns by chance. With the availability of
draft sequences for both the mouse and human genomes, it is
now possible to incorporate genomic sequence conservation into
de novo gene prediction algorithms. However, DNA alignment
programs alone are not an effective means of gene prediction

because a large fraction of the mouse and human genomes is
conserved but does not code for protein.

We developed a procedure that greatly reduces the false-positive
rate of de novo mammalian gene prediction by exploiting mouse–
human conservation in both an initial gene-prediction stage and an
enrichment stage. The first stage is to run gene-prediction programs
that use genome alignment in combination with statistical patterns
in the DNA sequence itself. A number of such programs have been
described (9–12). For these experiments, we used SGP2 (13) and
TWINSCAN (refs. 14 and 15 and http:��genes.cs.wustl.edu), two such
programs that we designed for efficient analysis of whole mamma-
lian genomes. TWINSCAN is an independently developed extension
of the GENSCAN probability model, whereas SGP2 is an extension of
GENEID (16, 17). The probability scores these programs assign to
each potential exon are modified by the presence and quality of
genome alignments. TWINSCAN uses nucleotide alignment [BLASTN
(18), blast.wustl.edu] and has specific models for how alignments
modify the scores of coding regions, UTRs, splice sites, and
translation initiation and termination signals. SGP2, in contrast, uses
translated alignments [TBLASTX (18), blast.wustl.edu] to modify the
scores of potential coding regions only. These programs predict
many fewer exons than GENSCAN with no reduction in sensitivity to
the exons of known genes (13, 14).

The second stage of our procedure is based on the observation
that almost all mouse genes have a human counterpart with highly
conserved exonic structure (1). We therefore compare all mul-
tiexon genes predicted in mouse in the first stage to those predicted
in human. Predictions are retained only if the protein predicted in
mouse aligns to a human protein predicted by the same program,
with at least one predicted intron at the same location (aligned
intron, Fig. 1). Predicted single-exon genes are always discarded by
this procedure. Although there are many real single-exon genes, it
is not currently possible to predict them reliably nor to verify them
reliably in a cost-effective, high-throughput procedure.

In this article, we show that our two-stage process yields
�1,400 predictions outside the standard annotation of the
mouse genome. RT-PCR and direct sequencing of a single exon
pair in a sample of these predictions indicates that the majority
correspond to real spliced transcripts. Our results also show that
this procedure is sensitive to genes that are hard to find by other
methods. The combination of these computational and experi-
mental techniques forms a powerful, cost-effective system for
expanding experimentally supported genome annotation. This
approach is therefore expected to bring the annotation of the
mouse and human genomes nearer to closure.

Experimental Procedures
Genome Sequences. The MGSCv3 assembly of the mouse genome
described in ref. 1 and the December, 2001 Golden Path assembly
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of the human genome (National Center for Biotechnology Infor-
mation Build 28) were downloaded from the University of Cali-
fornia (Santa Cruz) genome browser (http:��genome.ucsc.edu).

Genome Alignments. TWINSCAN was run on the mouse genome by
using BLASTN alignments to the human genome (WU-BLAST,
http:��blast.wustl.edu). Lowercase masking in the human se-
quence was first converted to N masking. The result was further
masked with NSEG by using default parameters, all Ns were
removed, and the sequence was cut into 150-kb database
segments. The mouse genome sequence was divided into
1-mb query segments. BLASTN parameters were: M�1
N��1Q�5 R�1 Z�3000000000 Y�3000000000 B�10000
V�100 W�8 X�20 S�15 S2�15 gapS2�30 lcmask
wordmask�seg wordmask�dust topcomboN�3. TWINSCAN was
run on the human genome by using separate BLASTN alignments
to the mouse genome, which was prepared in the same way except
that Ns were not removed before creating the BLAST database.

SGP2 was run on the mouse and human genomes by using a single
set of alignments. The masked human genome was cut into 100-kb
query segments that were compared with a database of all 100-kb
segments of the mouse genome with TBLASTX (WU-BLAST,
parameters: B�9000 V�9000 hspmax�500 topcom-
boN�100 W�5 E�0.01 E2�0.01 Z�3000000000 nogap
filter�xnu�seg S2�80). The substitution matrix was BLOSUM62
modified to penalize alignments with stop codons heavily (�500).

Initial Gene Predictions. TWINSCAN was run on 1-mb segments of
the mouse and human genomes with target genome parameters
identical to the GENSCAN parameters and the 68-set-ortholog
conservation parameters (available on request). Note that the
TWINSCAN results described in ref. 14 are based on a subse-
quently developed set of target genome parameters that yields
better results than those described here. SGP2 was run on
unsegmented mouse and human chromosomes. The REFSEQ
genes (which were not tested in the experiments reported here)
were incorporated directly into the SGP2 predictions, which
improved the predictions outside the REFSEQS slightly by pre-
venting some gene fusion errors. Note that the REFSEQS were not
used in generating the SGP2 results described in ref. 13.

Novelty Criteria. Mouse predictions were considered known if
they overlapped ENSEMBL predictions or had 95% nucleotide
identity to a REFSEQ mRNA or an ENSEMBL-predicted mRNA
over at least 100 bp. We used the most inclusive set of ENSEMBL
predictions available, based on the complete RIKEN cDNA set
without further filtering (1).

Enrichment Procedure. The enrichment procedure was applied
separately to predictions of TWINSCAN and SGP2. The protein
sequences predicted by each program in human and mouse were
compared by using BLASTP (19). For each predicted mouse
protein, all predicted human proteins with expect values �1 �

10�6 were called homologs. A global protein alignment was
produced for the best scoring homologs (up to five) by using
T-COFFEE (ref. 39; http:��igs-server.cnrs-mrs.fr��cnotred�
Projects�home�page�t�coffee�home�page.html) with default pa-
rameters. Exonic structure was added to the alignments by using
EXSTRAL.PL (www1.imim.es��rcastelo�exstral.html). When
both members of an aligned pair contained an intron at the same
coordinate with at least 50% identity over 15 aa on both sides the
corresponding mouse prediction was assigned to the ‘‘enriched’’
pool. Predictions with homologs but no aligned intron were
assigned to the ‘‘similar’’ pool.

RT-PCR. To test predictions, primers were designed in adjacent
exons as described in Results and used in RT-PCR of total RNA
from 12 normal mouse adult tissues. All procedures were as
described (20), except that JumpStart REDTaq ReadyMix
(Sigma) and primers from Sigma-Genosys were used.

Additional Details. See supplementary information at www1.
imim.es�datasets�mouse2002 for additional details of these
procedures.

Results
We applied the two-stage procedure described above to the
entire draft mouse and human genome sequences (see Experi-
mental Procedures). TWINSCAN predicted 17,271 genes with at
least one aligned intron, whereas SGP2 predicted a largely
overlapping set of 18,056 genes with at least one aligned intron.
These predicted gene sets contain 145,734 exons and 168,492
exons, respectively. Together the two sets overlapped 90% of
multiexon ENSEMBL gene predictions.

To estimate a lower bound on the proportion of novel predictions
that are transcribed and spliced, we performed a series of RT-PCR
amplifications from 12 adult mouse tissues (20). We did not test
genes that overlap ENSEMBL predictions nor those that are 95%
identical to ENSEMBL predictions or REFSEQ mRNAs over �100 bp
or more. Because ENSEMBL was the standard for annotation of the
draft mouse genome, we refer to the non-ENSEMBL genes as
‘‘novel.’’ A random sample of novel genes predicted by each
program and containing at least one aligned intron was tested.
Primer pairs were designed in adjacent exons separated by an
aligned intron of at least 1,000 bp (Fig. 2). The exon pair to be tested
was chosen on the basis of intron length (minimum 1,000 bp),
primer design requirements, and de novo gene prediction score,
with no reference to protein, EST, or cDNA databases. Amplifi-
cation followed by direct sequencing of the PCR product (Fig. 3)
verified the exon pair in 133 unique predicted genes of 214 tested
(62%, enriched pool, see Table 1 and www1.imim.es�datasets�
mouse2002). Mouse genes predicted by both programs were veri-
fied at a much higher rate than those predicted by just one program
(76% vs. 27%). Extrapolating from the success rates in Table 1,
testing the entire pool of 1,428 enriched predictions in this way is

Fig. 1. An example of predictions with aligned introns. RT-PCR positive predicted protein 3B1 (a novel homolog of Dystrophin) is aligned with its predicted human
ortholog (N-terminal regions shown; Upper of each row: mouse, Lower of each row: human). Each color indicates one coding exon. Three of four predicted splice
boundaries (color boundaries) align perfectly. Any one of these three is sufficient for surviving the enrichment step. Gaps in the alignment (shown as dashes) may
indicate mispredicted regions.
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expected to yield a total of 788 (	48) predictions with confirmed
splices, none of which overlap ENSEMBL predictions.

Considered in isolation, genes predicted by TWINSCAN had a
higher verification rate than those predicted by SGP2 (83% vs.

44%), but that difference is skewed by the fact that TWINSCAN
predicted fewer exons per gene, and hence its predictions were
less likely to overlap ENSEMBL predictions. We corrected for this
by clustering overlapping TWINSCAN and SGP2 predictions to
ensure that both were counted as positive if either was verified
experimentally. For each program, the predictions belonging to
a given cluster were counted only once, even if more than one
was RT-PCR positive. After this correction, the confirmation
rates were much closer (76% for TWINSCAN vs. 62% for SGP2).
The results shown in Table 1 include the correction. The
TWINSCAN verification rate is similar to the verification rate for
genes predicted by both programs because the exons predicted
by TWINSCAN are largely a subset of those predicted by SGP2.

Before the enrichment procedure, the combined predictions of
SGP2 and TWINSCAN overlap 98% of multiexon ENSEMBL genes, as
compared with 90% for the enriched pool. This finding suggests
that the enrichment procedure reduces sensitivity by a small but
noticeable degree. To investigate the potential loss of sensitivity
further, we applied the same RT-PCR procedure to two samples of
gene predictions that were excluded by the enrichment criterion and
did not overlap ENSEMBL predictions. One sample had one or more
regions of strong similarity to a predicted human gene but did not
satisfy the aligned intron criterion (similar pool) whereas the other
lacked any strong similarity to a human prediction by the same
program (other pool). The verification rates for the similar and
other pools were 25% and 20%, respectively, for genes predicted by
both programs, and 0% and 2%, respectively, for genes predicted
by only one program (Table 1 and www1.imim.es�datasets�
mouse2002). This finding shows that the enrichment procedure
increases specificity greatly and, consistent with the ENSEMBL
overlap analysis, reduces sensitivity only slightly. If all predictions in
the similar and other pools were tested the expected numbers of
successes are 126 (	105) and 105 (	83), respectively, with the large
standard errors resulting from the small number of successful
amplifications in these pools.

As a control, we also tested 113 predictions from the enriched
pool that did overlap ENSEMBL predictions. In 66 of the predic-
tions the splice boundary we tested was predicted identically in
ENSEMBL, and 64 of these tests (97%) were positive. In 47 of the
predictions the splice boundary we tested was not predicted
identically in ENSEMBL, and 21 of these tests (45%) were positive,

Fig. 2. Two examples of predicted gene structures (blue) with introns verified by RT-PCR from primers located in exons flanking the introns indicated in red.
Mouse–human genomic alignments (orange) correlate with predicted exons but do not match them exactly. (A) Verified mouse prediction 6F5, a novel homolog
of Drosophila brain-specific homeobox protein (bsh), with matching human prediction. (B) Verified mouse prediction 11F6, a homolog of rat vanilloid receptor
type 1-like protein 1. No matching human gene was predicted. A cDNA (GenBank accession no. AF510316) that matches the predicted protein over four
protein-coding exons was deposited in GenBank subsequent to our analysis.

Fig. 3. Verification of gene predictions by RT-PCR analysis. (A and B) Test of
prediction 6F5, a homolog of Drosophila brain-specific homeobox protein (bsh).
(C and D) Test of prediction 11F6, a homolog of rat vanilloid receptor type 1-like
protein. Gel analysis of amplimers (*) with the source of the cDNA pool indicated
above is shown in A and C. Primers (blue) and the region to which the amplimer
sequence aligned (underlining) are shown in B and D. The indicated forward
primers were used to generate the amplimer sequences (brain amplimer, B; skin
amplimer,D).Br,brain;Ey,eye;He,heart;Ki,kidney;Li, liver;Lu, lung;Mu,muscle;
Ov, ovary; Sk, skin; St, stomach; Te, testis; Th, thymus.
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despite the fact that ENSEMBL predictions are based on transcript
evidence. This verification rate may reflect alternative splices
identified by our method but not by ENSEMBL.

To determine whether tissue-restricted expression could explain
the absence of the predictions we verified from the transcript-based
annotation, we compared the expression patterns of our RT-PCR
positive predictions to those of the complete set of mouse orthologs
of genes mapping to human chromosome 21 (Hsa21). These genes
were chosen for comparison because they had been previously
subjected to the same protocol with the same cDNA pools in the
same laboratory (20). Our verified novel gene predictions showed
a significantly more restricted pattern of expression (Fig. 4A). The
mean number of tissues for our positive predictions was 6.3, and
33% of the positive predictions showed expression in three or fewer
tissues; the corresponding numbers for the mouse orthologs of
human chromosome 21 genes are 8.2 tissues on average and 14%
showing expression in three or fewer tissues. This difference in
expression specificity was statistically significant (ANOVA, F �
23.22, df � 1, P � 0.001).

To determine whether prediction of pseudogenes by our method
could explain some of the RT-PCR negatives, we computed the
ratio of nonsynonymous to synonymous substitution rates (KA�KS)
(21) for the subset of tested mouse predictions with unique putative
human orthologs (Fig. 4B). The mean for PCR-positive predictions
was 0.29 whereas for PCR-negative predictions it was 0.72. The
difference was statistically significant (ANOVA, F � 34.86, df � 1,
P � 0.001), suggesting that (i) some of the negative predictions may
be pseudogenes, and (ii) KA�KS can be efficiently incorporated in
the enrichment protocol to increase specificity (22).

Among the predictions with confirmed splices, 112 had signifi-
cant homology to known genes and�or domains. A few of these
genes, which were not represented in databases at the beginning of
our gene survey, were submitted to databases and�or published in
the literature in the intervening months. For example, we correctly
predicted the first four protein coding exons of TRPV3, a heat-
sensitive TRP channel in keratinocytes (23), and both exons of
RLN3 (preprorelaxin 3), an insulin-like prohormone (24). The
verified predictions with the most notable homologies are shown in
Table 2, including a novel homolog of dystrophin that is discussed
in the mouse genome paper (1). Table 2 includes two noncanonical
homeobox genes, one that is most similar to fruitfly brain-specific
homeobox protein (Figs. 2 and 3 A and B) (25) and another that is
a Not-class homeobox, likely to be involved in notochord develop-
ment (26). Four predicted genes were found to be expressed in the
brain and are likely to have neuronal functions, including one
paralog each of: Nna1, which is expressed in regenerating motor
neurons (27); an N-acetylated-�-linked-acidic dipeptidase, which
hydrolyses the neuropeptide N-acetyl-aspartyl-glutamate to termi-
nate its neurotransmitter activity (28); a novel �-aminobutyric acid

type B receptor, which regulates neurotransmitter release (29); and
an Ent2-like nucleoside transporter, which modulates neurotrans-
mission by altering adenosine concentrations (30). Other verified
genes are likely to be important in muscle contraction (myosin light
chain kinase homolog), degradation of cell cycle proteins (fizzy�
CDC20 homolog), Wnt-dependent vertebrate development
(Dapper�frodo homolog), and solute and steroid transport in the
liver (solute transporter �). Homologs of two further genes pre-
dicted in our studies are associated with disease. ATP10C, an
aminophospholipid translocase, is absent from Angelman syn-
drome patients with imprinting mutations (31), and otoferlin, which
is mutated in a nonsyndromic form of deafness (32).

Fig. 4. Characteristics of verified predictions. (A) Expression specificity.
Percentages of RT-PCR positive de novo predictions (red) and Hsa21 mouse
orthologs (blue) expressed in 1–12 tissues, tested in the same cDNA pools. (B)
Distributions of the ratio of nonsynonymous to synonymous substitution rate
(KA�KS) in 83 RT-PCR positive (red) vs. 98 RT-PCR negative (blue) mouse
predictions with reciprocal best BLAST matches among the human predictions.

Table 1. Predicted novel gene sets and RT-PCR verification rates

Pool Programs* No. of predictions No. tested No. positive Success rate, % Expected successes Standard error

Enriched† Both 827 154 117 75.97 628
One 601 60 16 26.67 160
Total 1,428 214 133 62.15 788 48

Similar‡ Both 505 16 4 25.00 126
One 1,620 22 0 0.00 0
Total 2,125 38 4 10.53 126 105

Other§ Both 234 5 1 20.00 46
One 3,425 58 1 1.72 59
Total 3,659 63 2 3.17 105 83

All Total 7,212 315 139 N�A 1,019

N�A, not applicable.
*Both, Genes predicted at least partially by both TWINSCAN and SGP2 programs. One, Genes predicted by one program that are not overlapped by predictions of
the other program. N�A, not applicable.

†Mouse gene predictions containing an intron whose flanking exonic regions align with flanking exonic regions predicted by the same program in human.
‡Mouse gene predictions that fail the enrichment step but show regions of strong similarity to a gene predicted by the same program in human.
§Mouse gene predictions without regions of strong similarity to any gene predicted by the same program in human.
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Discussion
We have demonstrated a remarkably efficient mammalian gene
discovery system. This system exploits the draft mouse and human
genome sequences in both an initial gene-prediction stage and an
enrichment stage. The first stage consists of SGP2 and TWINSCAN,
gene-prediction programs that use genome alignment in combina-
tion with statistical patterns in the DNA sequence. We have shown
elsewhere that both programs have greater sensitivity and speci-
ficity than single-genome de novo predictors, such as GENSCAN (13,
14). In this article, we have demonstrated the effectiveness of the
enrichment stage, in which predictions are retained only if the
protein predicted in mouse aligns to a human protein predicted by
the same program, with at least one predicted intron at the same
location (aligned intron, Fig. 1). In our pool of predictions, the
aligned intron filter is expected to eliminate 24 times more RT-PCR
negatives than RT-PCR positives. This enrichment procedure can
be applied to predictions from any program.

Our goal was to develop a low-cost, high-throughput system
for finding and verifying coding regions that are missed by
annotation systems that require existing transcript evidence.
ENSEMBL was chosen as the representative of such systems
because the Mouse Genome Sequencing Consortium judged it to
be the most suitable tool for timely, cost-effective, reliable
annotation of the mouse genome sequence. Thus, we evaluated
our system by investigating genes that do not overlap ENSEMBL
predictions. Our system is not designed to find genes that would
be missed by expert manual annotators, who can effectively
integrate information such as the predictions of GENSCAN (8) and
GENOMESCAN (33), percent-identity plots (34), comparison to
fish genomes (35, 36), alignment of weakly homologous proteins,
and alignment of EST sequences. As a result, we did not exclude
gene predictions from our evaluation based on these indicators.

Our two-stage system identified a highly reliable pool of 827
predicted genes not overlapping the standard annotation, of which
we tested 154 for expression by using RT-PCR and direct sequenc-
ing. Primers designed for a single pair of adjacent exons in each
predicted gene yielded a spliced PCR product whose sequence
closely matched that of the predicted exons in 76% of these tests.

In the only other published report of high-throughput verification
of gene predictions of which we are aware, 14% of predictions not
overlapping the standard annotation yielded spliced products (37).
These numbers cannot be compared directly because of differences
in the sampling criteria, but the magnitude of the difference
suggests our method provides new levels of efficiency in experi-
mental confirmation of genes outside the standard annotation set.

The sensitivity of our method also appears to be high. Predictions
in our enriched pool overlap 90% of multiexon genes predicted by
ENSEMBL. However, it has been estimated that �4,000 ENSEMBL
predictions comprising 12,000 predicted exons are in fact pseudo-
genes (1). Although the precise number of multiexon pseudogenes
in the ENSEMBL annotation is unknown, this estimate suggests that
our enriched pool may overlap a much larger fraction of the
functional genes identified by ENSEMBL. Further, RT-PCR tests of
TWINSCAN and SGP2 predictions outside the enriched pool indicate
that a relatively small number of these predictions are transcribed
and spliced in the 12 tissues tested. Thus, the enrichment procedure
is sensitive to both ENSEMBL predictions and verifiable predictions
by TWINSCAN and SGP2.

Using our system, we confirmed one intron of 139 predicted
genes that do not overlap any gene in the standard mouse
genome annotation (1). Ninety-two of the RT-PCR positive
introns (66%) did not align to any mouse EST, and these might
have posed difficulties even for human annotators. Furthermore,
seven of the RT-PCR negative introns (4%) did align to mouse
ESTs and six of these were in the enriched pool, suggesting that
the true percentage of transcribed and spliced predictions in this
pool may be even higher than the RT-PCR positive percentage.

Among RT-PCR positive predictions, 24 had homologies to
known proteins that we found particularly interesting (Table 2). The
positive identification of these homologs is expected to impact
numerous research programs devoted to genes of developmental
and medical importance. In general, these genes were probably
missed in the ENSEMBL annotation because the length and percent
identity of the homologies were not sufficient to support a protein-
based gene prediction (Table 2). In many cases, such as the
predicted homolog of a brain-specific homeobox protein, the ex-

Table 2. Novel mouse genes, their tissue expression, and their homologs

Code B H K Y V S M L T K E O %Id Ln Homology

3B1 � � 38 134 Dystrophin-like; with ZZ domain
3B3 � � � � � 25 184 Novel aquaporin; similar to Drosophila CG12251
3C3 � � � � � 25 260 TEP1 (telomerase associated); probable ATPase
3C5 � � 47 198 Voltage-dependent calcium channel � subunit
4B3 � � � 34 74 IFN-induced�fragilis transmembrane family
4C6 � � � � � 30 134 IL-22-binding protein CRF2-10
4G4 � � � � 64 109 Nna1p, nuclear ATP�GTP-binding protein
5B5 � � � 43 111 Likely aminophospholipid flippase (transporting ATPase)
1E3 � � � � � 40 106 N-acetylated-�-linked-acidic dipeptidase (NAALADase)
6C4 � � 42 117 Not-type homeobox; poss. involved in notochord development
6F5 � � � 66 102 Drosophila brain-specific homeobox protein (bsh)
11F2 � � � � � 29 216 Human �-aminobutyric acid type B receptor 2, neurotransmitter release regulator
5A2 � � � � 41 36 Skate liver organic solute transporter �
11B6 � � � 55 116 IFN-activatable protein 203; nuclear protein
12B3 � � � � � � � � 25 229 Fatty acid desaturase; maintains membrane integrity
11F6 � � � � � � � 44 494 Rat vanilloid receptor type 1 like protein 1
12E3 � � 52 175 Fizzy�CDC20; modulates degradation of cell-cycle proteins
12F1 � � � � � 43 355 Otoferlin (mutated in DFNB9, nonsyndromic deafness)
12H1 � � � 45 116 Fruitfly additional sex combs; a Polycomb group protein
12C4 � � � 43 133 Caenorhabditis elegans C15C8.2; single-minded-like; HLH and PAS domains
12D2 � 41 397 Cytosolic phospholipase A2, group IVB
12A5 � 38 415 Fruitfly GH15686p; Ent2-like nucleoside transporter
12E5 � � � � 32 111 Relaxin 3 preproprotein; prohormone of the insulin family
11A1 � � � � � 89 75 Mouse BET3, involved in ER to Golgi transport
11A2 � � � � � � 70 207 Vacuolar ATP synthase subunit S1
11B2 � � � � � � 54 271 Myosin light chain kinase, skeletal muscle
11G2 � � � � � � � � � � 36 179 Dapper�frodo (transduces Wnt signals by interacting with Dsh)

Code, Coding name of tested gene model. B, brain; H, heart; K, kidney; Y, thymus; V, liver; S, stomach; M, muscle; L, lung; T, testis; K, skin; E, eye; O, ovary.
%Id, Percentage amino acid identity. Ln, Number of amino acids in the local alignment between the prediction and the homolog.
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pression patterns we found were consistent with what would be
expected from the function of the known homolog (Fig. 3 A and B).

The confirmed 139 genes also showed a relatively restricted
expression pattern, on average. Because all mouse orthologs of
genes on human chromosome 21 had already been tested by using
the same experimental protocol and the same cDNA pools, we were
able to directly compare expression patterns. To the extent that the
known genes on chromosome 21 are no more tissue specific than
the complete set of known genes, the results (Fig. 4) suggest that our
system may be particularly sensitive to genes with tissue-restricted
expression. Qualitatively similar restricted expression patterns were
reported for novel GENSCAN predictions on chromosome 22 (37),
lending further support to the value of de novo prediction for
identifying genes with tissue-restricted expression.

Of the RT-PCR positive novel predictions, only 33% have
identifiable homologs in the sequenced fish (Fugu�Tetraodon�
zebrafish) genomes. Comparing this finding to the recent estimate
that three-quarters of all human genes can be recognized in the
Fugu genome (36) suggests that our system may be particularly
sensitive to genes that are not ubiquitous in the vertebrate lineage.
Genes with relatively restricted expression patterns and species
distribution can be difficult to find by using transcript-based meth-
ods like GENEWISE (38) and compact-genome methods like EXO-
FISH (35), but they appear to be tractable for our system.

Extrapolating from the success rates in all categories, the ex-
pected total number of gene predictions that could be successfully
RT-PCR amplified in the cDNA pools we tested is 1,019 (Table 1),
adding �5% to the number of functional mouse genes identified by
ENSEMBL (1). The number of distinct genes verifiable in this way
may be slightly smaller, because the effect of fragmentation in
ENSEMBL and in our predictions is not readily testable. However, the
number of predictions that are transcribed and spliced is likely to
be �1,019, because (i) we tested only one exon pair from each
prediction and (ii) we used only 12 adult mouse tissues (20).

The relatively low success rate in the pools failing the enrichment
step suggests that the number of real, multiexon genes whose
existence has been predicted but not yet confirmed is in the range
of 1,000–2,000 (including those predictions in the enriched pool that
have not been confirmed). Because we have used only two predic-
tion programs, TWINSCAN and SGP2, it is possible that other pro-
grams might yield a large additional set of predictions that pass the
enrichment step. However, GENSCAN yields only 49 additional
predictions that pass enrichment and novelty criteria and do not

overlap the 1,428 “aligned intron” novel predictions from TWIN-
SCAN and SGP2 (3%). These 49 are worth testing, and adding more
prediction programs will yield at least a few more predictions with
aligned introns. Nonetheless, the data presented here suggest that
the 1,428 predictions in the enriched pool may overlap a significant
fraction of the previously unannotated, multiexon mouse genes.

Using the draft sequences of the mouse and human genomes,
we have developed a cost-effective, high-throughput system for
predicting genes and verifying the existence of corresponding
spliced transcripts. Applying this system to the entire mouse
genome, we showed that an automated system can produce a
large set of experimentally supported mammalian gene predic-
tions outside the standard annotation. Further, the average cost
per verified exon pair is less than two primer pairs and sequenc-
ing reactions. We expect that testing the remaining predictions
in the enriched pool will locate most multiexon mouse genes that
are currently unannotated, bringing us significantly closer to
identification of the complete mammalian gene set.

As more mammalian genomes are sequenced, the need for
experimentally validated high-throughput annotation will con-
tinue to grow, as will the data available for methods such as ours.
Using the sequences of more genomes, it may be possible to
extend this approach to single-exon and lineage-specific genes.
In combination with methods like ENSEMBL and refinement by
expert annotators, these developments may bring complete,
experimentally supported genome annotation within reach.
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